
www.manaraa.com

ORIGINAL ARTICLE

Early identification of crosscutting concerns with the Language
Extended Lexicon

Leandro Antonelli • Gustavo Rossi •

Julio Cesar Sampaio do Prado Leite •

João Araújo

Received: 28 February 2013 / Accepted: 7 November 2013 / Published online: 26 November 2013

� Springer-Verlag London 2013

Abstract Large-scale software applications are complex

systems that involve a myriad of different concerns. Ide-

ally, these concerns should be organized into separated and

different modules, but often some of these concerns over-

lap and crosscut each other. Such a situation is problematic,

as concerns are tangled and scattered into different mod-

ules; thus, design and source code become difficult to

produce and maintain. The Modularity community has

been addressing crosscutting concerns by developing

techniques based on separation of concerns. This separa-

tion must be done as early as possible during software

construction to obtain a more modular and consequently

better maintainable software, where evolution is performed

with less effort and the possibility of introducing unfore-

seen mistakes is minimal. In this paper, we propose a

strategy to identify crosscutting concerns at requirements

level, i.e., at early stages in the software development

process, by using the Language Extended Lexicon.

Keywords Requirements engineering �Modularity �
Crosscutting concerns � Language Extended Lexicon

1 Introduction

The development of software systems is a complex activity

since different sorts of actors with different backgrounds

are involved. During development, they perform distinct

tasks at different moments with the objective of building

diverse software products. This means that it is difficult to

define a precise schedule to organize the development at

the beginning of the project. Initially, there is not much

detailed information; the result is a coarse-grained sche-

dule, and its deadlines become a goal to accomplish instead

of a reasonable estimation for the delivery of the product.

As a consequence, overcoming a delay becomes difficult.

In other engineering disciplines such as civil engineering, it

is usual for some tasks to be repetitive and increasing the

number of people can reduce the overall schedule. Soft-

ware engineering is different as, in general, tasks are very

specific, and if we add more people to overcome the delay,

we often lose more time (at least at the beginning when

new people are incorporated). This fact is known as

Brooks’ Law [12]. Furthermore, the nature of the software

also makes its development a complex task. To illustrate

this, we can list four well-known software characteristics

(adapted from [12]) that make software a different kind of

artifact altogether, contributing to the complexity of its

construction.

(i) Invisibility: Software is not visible as a product, like a

building, a car, or a plane. This characteristic imposes

a barrier for human perception of size, form, and

structure.

(ii) Modifiability/changeability: Software is built by

descriptions, which are very malleable since change

can be made abstractly by rewriting. This creates the

illusion that software is easy to change.

L. Antonelli (&) � G. Rossi
Lifia, Fac. de Informática, UNLP, Buenos Aires, Argentina

e-mail: lanto@lifia.info.unlp.edu.ar

G. Rossi

e-mail: gustavo@lifia.info.unlp.edu.ar

J. C. S. P. Leite

Dep. Informática, PUC-Rio, Rio de Janeiro, RJ, Brazil

URL: http://www.inf.puc-rio.br/*julio

J. Araújo

CITI, Faculdade de Ciências e Tecnologia, Universidade Nova

de Lisboa, Lisbon, Portugal

e-mail: joao.araujo@fct.unl.pt

123

Requirements Eng (2015) 20:139–161

DOI 10.1007/s00766-013-0193-4

http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-013-0193-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-013-0193-4&domain=pdf

www.manaraa.com

(iii) Conformity: Software has to conform to its infra-

structure, which can also be software. It does not

exist per se. Changes in the infrastructure imply

changes in the software.

(iv) Complexity: Software needs reification by other

artifacts, including software, to transform itself from

an idea into a product. This characteristic corrobo-

rates how difficult it is for humans to have a clear

idea of its limits, interaction with the environment,

and its shape.

As such, software has to deal with a lot of concerns. In

order to deal with complexity, the traditional engineering

strategy is to use decomposition, that is, the ‘‘divide and

conquer’’ strategy: dividing a problem into smaller pieces

that can be solved separately. After the solution of each

piece, all the partial solutions must be joined together to

obtain the solution to the entire original problem. This

strategy is used in software system development in two of

the most widespread paradigms: structured design and

object-oriented design. In structured design, the entire

system is decomposed into a hierarchy of modules where

each module solves a particular part of the problem. The

integration of all modules comprises the target system. In

object-oriented design, a proposed solution consists of a

hierarchy of classes arranged by the ‘‘is specialization of’’

relation. Then, each class must have a set of well-defined

responsibilities, and the integration of all the classes into

one single environment will produce the targeted system

[29]. Both techniques rely on encapsulating each concern

in one building block: a module or a class. However, this

strategy fails when there is a need to deal with pieces that

are spread over other pieces, because they are common to

several of them. Usually, this happens when injecting

quality attributes into a product, because the operational-

ization of a quality attribute is similar for different pieces.

A recurring example is authorization: Different pieces of a

software system may require operations that guarantee that

the proper authorization is granted for the execution of that

piece. As such, authorization is an example of a crosscut-

ting concern, that is, it crosscuts different pieces of a whole

software application. Crosscutting concerns are character-

ized by being tangled and scattered. They are tangled to

other concerns into a piece and scattered into different

pieces. The Modularity community [also known as the

aspect-oriented software development (AOSD) commu-

nity] deals with crosscutting concerns, also known as

aspects, in order to tackle the problems of tangling and

scattering.

Software development is a succession of descriptions in

different languages where a previous description is neces-

sary for the next. If changes are incorporated into a

description, they spread over previous and succeeding

descriptions, which have to be changed in order to maintain

conformity. For instance, Boehm [9] states that if a mistake

occurs in a requirements description and it is only corrected

in code description, after implementation, the correction

cost could be multiplied by up to 200. Moreover, Mizuno

[22] developed the ‘‘waterfall of errors’’ in which he states

that in every stage of software development, the possibility

of occurrences of mistakes is stronger than in the previous

one, because every stage relies on prior artifacts. Even if

wrong products may produce good work, it would still be

based on wrong products, so it would, in fact, be wrong

work after all, that is, why it is necessary to make the right

decision as soon as possible during software development.

This means that it is extremely important to identify

crosscutting concerns early on in order to avoid rework,

i.e., reduce the evolution effort.

Yu et al. [33] focused on discovering aspects from goals.

Goal-based models support the description and analysis of

intentions that underlie a new software system. Some goal

models such as i* also model the actors that hold these

intentions. These goals are ‘‘roughly speaking, precursors

of requirements.’’ Nuseibeh argued that the problem world,

inhabited by customers and users, is a fertile ground for

identifying concerns. Indeed, he states that the problem

world is often the most appropriate source for early iden-

tification of concerns [23]. Rashid and Moreira [27] also

argue that it is possible to identify crosscutting concerns

during domain analysis, a stage that is carried out before

requirements are written.

There are several approaches to identify crosscutting

concerns such as the ones depicted in [7, 10, 25, 26, 28,

30], but by analyzing them in detail (see Sect. 2), we detect

some shortcomings that can compromise the effectiveness

of the aspect identification itself in an application domain.

To mitigate these shortcomings, we propose the Language

Extended Lexicon (LEL) approach. LEL is a vocabulary

oriented technique to describe an application [18] and

identify crosscutting concerns. It can be defined as a

glossary whose aim is to understand the language of the

application [18]. This glossary must be built very early in

software development stages because the LEL construction

makes it possible to learn about the application domain and

allows requirements engineers to write requirements with

the knowledge gained from the LEL construction.

Although there are techniques to derive requirements from

LEL [2], its main goal is to understand the language of the

application domain. The construction of a LEL requires an

elicitation strategy at a meta-level, that is, the elicitation of

the application language, the language that is spoken in the

universe of discourse in which a future software or a future

evolution of a software will be placed. This metalanguage

is represented by the LEL, a lexicon where there is a

140 Requirements Eng (2015) 20:139–161

123

www.manaraa.com

definition for the connotation and the denotation of phrases

and words from the universe of discourse.

The approach we propose identifies crosscutting con-

cerns very early in software development, even prior to a

requirements specification. It is very important to identify

crosscutting concerns as early as possible because the

development team can use the strategic information of

crosscutting concerns in order to build the products they

need (requirements specification, architectural design,

source code, etc.). Moreover, performing the identification

so early avoids the reworking of artifacts and, otherwise,

necessary if crosscutting concerns were identified in the

middle of the development. Another important consider-

ation is that LEL can be constructed by practitioners and

can be reused to identify crosscutting concerns with the

strategy we propose. The language we use to represent the

application (LEL) has a good expressiveness, but above all,

it uses conversational language without introducing any

kind of formalism which would make difficult its use by

application experts.

In summary, the aim of this paper is to provide a

strategy to identify crosscutting concerns using LEL. The

two main contributions of this work are as follows:

(i) First, the strategy is based on regular LEL construc-

tion with only one additional issue: The requirements

engineer must group symbols into states. Our strategy

provides guidelines to organize LEL, making groups

of symbols according to states.

(ii) Second, the approach identifies crosscutting concerns

by performing some calculations of the relationships

between symbols belonging to different groups. This

calculation is the main contribution to our strategy. It

can be performed manually assisted by a spreadsheet,

although there is a specific tool being implemented

[4]. This calculation provides information to help the

requirements engineer make the final decision about

what are the identified crosscutting concerns.

The rest of the paper is structured as follows. Section 2

discusses some related work. Section 3 provides the

background necessary to understand our approach. Sec-

tion 4 describes the approach, while Sect. 5 applies it to

two case studies. Finally, Sect. 6 presents some conclusions

and suggestions on future works.

2 Related work

This section describes approaches whose aim is identifying

crosscutting concerns at early stages, as this is also one of

the goals of this paper. At the end of this section, we also

mention some approaches related to identifying aspects in

source code.

Baniassad et al. [7] describe a general approach to

identify crosscutting concerns. Baniassad and Clarke [6]

present Theme/Doc, a systematic approach to model

aspectual requirements. Sampaio et al. [28, 29] propose a

tool to mine aspect in requirements. The tool is configu-

rable, and it can work with viewpoints, use cases, etc.,

starting its analysis on the colloquial language from doc-

uments. Rago et al. [25] considers important to use not only

verbs but also objects on which verbs act. Rashid et al. [26]

propose a model with viewpoints with group requirements.

It is very interesting to group requirements instead of

working inside them. The strategy consists in identifying

viewpoints which impact on many requirements. Shepherd

et al. [30] detect crosscutting concerns analyzing naming

conventions. The approach is based on making lists of

words that have a related meaning or denotation. Bounour

et al. [10] present a categorization of techniques to identify

crosscutting concerns mainly in source code. Some tech-

niques rely on execution flow or dataflow, and others rely

on structure or dispersion of the source code. There are two

lines of work that focus on composition instead of identi-

fication. Chitchyan et al. [14] use the natural language

defined in a meta-model. Araújo et al. [5] use state

machines to make compositions of crosscutting concerns.

These approaches are described in more detail, as follows.

Baniassad et al. [7] propose a way of organizing

requirements by dividing them into core and crosscutting

ones, and they also describe some activities to perform this

organization. Their work performs an analogy between

requirements documents and source code, and they suggest

organizing requirements in the same way, specifying core

requirements apart from crosscutting requirements, both of

which must be related through impact requirements. They

also propose an approach to specify requirements based on

4 activities: (i) identification, (ii) capture, (iii) composition,

and (iv) analysis. Identification means analyzing the

requirements in order to separate core requirements from

crosscutting ones. This separation can be done through

three techniques: (i) aspect terms, (ii) impact requirements,

and (iii) scattered concerns. Aspect terms are terms or

expressions that refer to quality attributes (nonfunctional

requirements such as safety, security, and performance). It

is easy to implement this kind of strategy because it con-

sists in a data mining approach which compares the

extracted words with a database of candidate terms. Iden-

tification through impact requirements involves analyzing

the relationship between the requirements. One require-

ment is related to another when there is an explicit mention

of the second requirement in order to qualify it in some

way. The scattered concerns technique relies on identifying

scattered knowledge that is repeated in several require-

ments. This strategy is analogous to the identification of

aspects in source code.

Requirements Eng (2015) 20:139–161 141

123

www.manaraa.com

After identification through one of the strategies

described in the previous paragraph, capture must be per-

formed. It consists in reorganizing requirements by iso-

lating crosscutting requirements from core requirements in

order to avoid redundancy of information. After capture,

requirements are modeled into two groups; thus, it is

necessary to specify the relationship between them, that is,

the goal of composition. Basically, each aspectual

requirement must be related to a core requirement. After

composition, a new model is obtained, which contains the

same information as the original model. Nevertheless, the

new model is modularized and cleared of repeated infor-

mation. The last activity, analysis, involves detecting

conflict and inconsistencies.

Baniassad and Clarke [6] propose a technique called

Theme/Doc to model requirements showing the relation-

ships between different elements. Theme/Doc is based on

the notion of theme which represents a feature of the sys-

tem. Multiple features can be combined in order to describe

the whole functionality of the system. There are two types

of themes: base themes and crosscutting themes; the latter

have behavior overlapping with functionality from the base

themes. Theme/Doc works on the premise that if two

behaviors are described in the same requirement, they are

related. The strategy of identification consists of four steps:

(i) identification of actions and entities, (ii) categorization

of actions into themes, (iii) identification of crosscutting

themes, and (iv) analysis of themes. The first step, identi-

fication of actions and entities, involves analyzing the

requirements of the system and identifying key actions and

key entities. The second step, categorization of actions into

themes, consists in determining which of the key actions

must be considered themes. Some actions are not suffi-

ciently relevant to be considered themes since they are sub-

actions. In this step, the action view must be built, a diagram

composed of two elements: actions and requirements. Each

action must be related to the requirements where it is

mentioned. This diagram helps to define themes, but it is a

highly intuitive process. The third step, identification of

crosscutting themes, is performed with a diagram similar to

the action view, but only containing the actions considered

as themes. This diagram shows requirements that are shared

by two or more themes. If a requirement is shared by two or

more themes, an aspect may have been found, because each

theme needs the other to provide the functionality. Never-

theless, it could also be possible to have found a require-

ment that includes several other requirements. Thus, it is

necessary to verify whether the requirement can be written

into several requirements where each one relates to only one

theme. We will have to found an aspect if that rewriting is

not possible. The last step involves analyzing each theme in

relation to the requirement associated with key actions. This

analysis is used to confirm the identification.

Sampaio et al. [28, 29] propose a tool, EA-Miner, to

identify and isolate base concerns, early aspects, and

crosscutting relationships between these elements. Since

the tool is configurable, base concerns depend on the model

used. For example, if it is UML, a base concern is a use

case, while if it is a model oriented to viewpoints, a base

concern is a viewpoint. Early aspects are semantic entities

which crosscut base concerns. The authors emphasize that

the strategy uses documents without any specific type of

structure. EA-Miner uses some natural language processing

techniques: parts of speech (POS), semantic tagging and

word frequencies, and concordances. All of this is provided

by WMatrix tool. The authors argue that the best way to

analyze the great amount of information produced in the

requirements step is through a tool. Nevertheless, they also

recognize the importance of an expert to validate the

results provided by the tool. The strategy consists of the

following steps. The first one is identification, where EA-

Miner parses the different structure files and sends them to

WMatrix in order to perform the POS and semantic tag-

ging. EA-Miner analyzes results and produces a new model

over which the screening out activity is performed. Finally,

the results are shown to the user who must refine them by

deleting or adding entities. The most sensitive activity is

the process that WMatrix performs where it identifies

nouns and verbs in POS. Then, the semantic tag that relates

words and expressions to concepts is also sensitive. The

weakness in this tool is that it does not detect small vari-

ations in words (for example, singular to plural). Moreover,

some of the identifications are performed based on a dic-

tionary; thus, if the dictionary is not complete, the results

are not either.

Rago et al. [25] state that the majority of the techniques

to identify crosscutting concerns rely on searching for

verbs, but they consider it more useful and accurate to

identify the objects on which verbs act. However, since

natural language not always includes information about the

objects affected by verbs, it is also necessary to consider

verbs without objects. The strategy consists of the fol-

lowing steps. First, a lexical, syntactic, and semantic

analyses are performed. Basically, it involves discourse

tagging and semantic disambiguation of the words. This is

performed on the basic and alternative flow of the use

cases, and afterward on nonfunctional requirements and

additional requirements. All this information makes pos-

sible the production of a graph with nodes representing the

verbs and direct objects which are referred to by other

verbs and direct objects. This relationship is achieved

through intermediate nodes which group semantically

related verbs and nouns. The graph is traversed in order to

determine aspect candidates, sorting them by feasibility.

Candidates are groups of verbs which crosscut some use

cases, the total number of which must be greater than a

142 Requirements Eng (2015) 20:139–161

123

www.manaraa.com

certain value. Then, the verbs in these groups are analyzed

to identify the most representative verb of all. Additionally,

it is decided whether the concerns are functional or non-

functional. In order to determine the ranking of each

crosscutting concern, the following variables are analyzed:

crosscutting use cases, the number of crosscuts produced

by the group of verbs, relevancy of the occurrence of the

group of verbs, relevancy of the occurrence of the direct

objects, and characteristics of the functional or nonfunc-

tional requirements.

Rashid et al. [26] propose an approach to modularize

core functionality (modeled through viewpoints grouped in

requirements) and crosscutting concerns, and show how to

compose them. The strategy begins by identifying and

specifying the stakeholders’ concerns and requirements. It

is useful to relate concerns to requirements through a

matrix. Then, observing the matrix, it is possible to identify

which concerns crosscut which requirements. This is con-

sidered a coarse-grained identification. After that, it is

necessary to define composition rules between concerns

and requirements in order to establish fine-grained relations

between them. These rules work at requirements level, and

they require actions and operators, which can include the

following: constraints, outcome, enforce, ensure, provide,

and apply. If two aspects are restricted to the same

requirement, a balance must be performed between the

aspects considering the contribution.

Shepherd et al. [30] detects crosscutting concerns ana-

lyzing naming conventions. He claims that the lexical

chain is a good technique because it overcomes the prob-

lem of syntactic analysis. The approach consists in making

lists of words with a related meaning or denotation. Then,

giving to the word ‘‘related’’ the meaning of certain

semantic distance, the approach identifies crosscutting

concerns by finding groups of related words.

Bounour et al. [10] present a classification of aspect

mining approaches. Some techniques are based on ana-

lyzing static source code, while others rely on execution

flow. Bounour identifies a clone detection category where

approaches conduct a lexical analysis of the information

structure. There is an approach which uses program

dependence graph (PDG) containing information of

semantic nature, such as control and dataflow of a program.

Bounour also mentions a technique which combines an

abstract syntax tree (AST) with tokenization representa-

tions of source code. This technique uses parsers to obtain a

syntactical representation of the source code (AST). Then,

the clone detection algorithm searches for similar subtrees

in the AST. The AST technique has its limitations; in that,

only homogeneous concerns can be identified, because the

approach relies on detecting similar patterns in the tree and

minor differences from subparts of the tree making it

impossible to detect an aspect. Bounour also states that

there is a formal concept analysis approach (FCA) based on

finding meaningful groupings of elements that have com-

mon properties. In order to achieve this grouping, several

use cases are executed and two constraints must be ana-

lyzed to find concept candidates. The first constraint states

that the attributes of the concept must belong to more than

one class. The second states that different methods from

the same class are contained in more than a use case.

Finally, Bounour also describes an approach based on

scattering called fan-in analysis, which mines source code

to find symptoms of code scattering. This technique states

that a method with a lot of distributed calls must be con-

sidered a concern because the method implements a

crosscutting functionality. The technique considers that the

amount of calls (fan-in) is a good measure for the impor-

tance and scattering of the discovered concerns. We do a

kind of fan-in analysis in our approach as well because we

measure references of behavioral responses between sym-

bols from different sates.

There are two lines of work that focus on composition

instead of identification. Chitchyan et al. [14] claim that

syntactic composition has its limitations, so they use nat-

ural language. They define a meta-model with subjects and

objects. Araújo et al. [5] present an approach to modeling

scenario-based requirements using aspect-oriented princi-

ples. Aspectual scenarios were modeled using pattern

specifications, and a technique is described to compose

aspectual and non-aspectual scenarios and to transform

them into a set of executable state machines. In this way,

they show how to separate aspects during scenario devel-

opment but also how to generate a composed behavioral

description for simulating the scenarios.

This section has described several techniques to identify

crosscutting concerns at early stages of software develop-

ment. Some techniques are based on requirements state-

ments and use cases, while others analyze products from

previous stages. In general, all the techniques are based on

analyzing verbs in order to identify crosscutting concerns.

However, other techniques also rely on objects. Moreover,

it is important to group elements in order to identify how

they relate to each other. We will now summarize the

benefits and drawbacks of the different techniques used to

identify crosscutting concerns at early stages.

Baniassad et al. [7] propose a group of activities to

factorize requirements, but no specific strategy is suggested

for this. Baniassad and Clarke [6] do propose a specific

strategy to identify crosscutting concerns, although the

strategy depends on the subjectivity of the practitioner,

who must decide which actions are themes. The practi-

tioner must also provide some keywords to begin the

analysis. Sampaio et al. [28, 29] devise a strategy that

requires much human support, because the proposed tool

provides results, but the practitioner must analyze that

Requirements Eng (2015) 20:139–161 143

123

www.manaraa.com

information so that the tool can continue the process. Rago

et al. [25] consider the analysis of verbs and objects, which

is important to enrich the process, but they perform the

analysis after requirements are specified because they work

with use cases. Rashid et al. [26] proposes an interesting

and uncommon technique for grouping requirements into

viewpoints; nevertheless, the strategy is subjective. Also,

all these techniques were not conceived to describe domain

properties. It is worth mentioning that our approach does

not aim to propose a composition language as some of the

other approaches do, but their mechanisms can be adapted

and incorporated in our approach as a part of future work.

In this paper, a novel strategy is proposed to identify

crosscutting concerns that solves some of the previously

discussed problems, namely: (i) diminish subjectivity, (ii)

perform the analysis as early as possible, (iii) consider

objects and not only verbs, and (iv) grouping the artifacts

used to perform the analysis. Our approach consists in

analyzing LEL, an artifact constructed very early in soft-

ware development, even previous to requirements specifi-

cation. The LEL symbols are categorized, and we rely on

verbs as well as objects. Symbols are grouped into states,

and the strategy involves performing some objective cal-

culations between the references of LEL symbols from

different groups in order to rank the crosscutting concerns

probability. This ranking helps the requirements engineer

to make his final decision as to what are the concerns.

3 Language Extended Lexicon (LEL)

This section describes the LEL. This technique captures the

language related to an existing or future application. LEL

stands as an important source of raw material to write

requirements, which is the basic element we analyze to

identify crosscutting concerns.

We use a vocabulary oriented strategy to capture the

application language, that is, the words and expressions

used by different actors in the context of the application

which have a particular meaning in such a context. LEL

takes a simple idea as a starting point, describing the lan-

guage of the application domain before describing the

application. As such, it is a metalanguage used to gather or

elicit requirements, which aims at describing the meaning

of words and phrases specific to a given application

domain. LEL can be understood as a glossary whose goal is

to capture the definitions of relevant terms belonging to an

application for which requirements will be written. LEL is

anchored in a simple idea: ‘‘understand the language of a

problem or a domain, without worrying about under-

standing the problem.’’ Thus, LEL construction relies on

the identification of symbols which are important to the

application and must be defined in order to understand the

language of the application domain. The immediate

potential advantage of this is reusability of specifications in

a domain where we can develop a family of applications,

but this issue will not be addressed in this paper.

This section presents some basic concepts of LEL con-

struction. We will not explain in detail the process of

constructing LEL because its construction is prior to our

approach; the reader who is interested in this can refer to

Leite and Franco [18] and Breitman and Leite [11], who

describe the process to obtain LEL. Moreover, there is a

tool named C&L to assist in this process [13, 19].

Terms (symbols) are defined through two attributes:

notion and behavioral responses. Notion describes the

symbol denotation, which are the intrinsic and substantial

characteristics of the symbol. Behavioral responses

describe connotation, i.e., the relationship between the term

being described and others. It is our assumption that

behavioral responses have a conceptual relationship with

the identification of impact requirements.

Each symbol of the LEL belongs to one of four cate-

gories: subject, object, verb, and state. This categorization

guides and assists the requirements engineer during the

description of attributes. Table 1 shows each category with

its characteristics and how to describe them.

We will use, as an example, the same banking appli-

cation we have mentioned in the previous section. A bank

allows its clients to save money. The bank opens accounts

for its clients to deposit and withdraw money. The bank

also allows them to consult their account balance. As the

bank needs some kind of security, it must verify the

identity of the person who operates the account, and it also

keeps a record of each operation in a log after it is per-

formed. Finally, the process of opening and using an

Table 1 LEL categories

Category Characteristics Notion Behavioral

responses

Subject Active elements

which perform

actions

Characteristics

or condition

that subject

satisfies

Actions that

subject performs

Object Passive elements

on which

subjects

perform

actions

Characteristics

or attributes

that object has

Actions that are

performed on

object

Verb Actions that

subjects

perform on

objects

Goal that verb

pursues

Steps needed to

complete the

action

State Situations in

which subjects

and objects can

be

Situation

represented

Actions that must

be performed to

change into

another state

144 Requirements Eng (2015) 20:139–161

123

www.manaraa.com

account follows 3 states. First of all, the bank and the client

agree to open an account. After that, the bank opens the

account, but it will be blocked because the bank must first

verify some documentation from the client, and although

the client will have his account, he will not be able to

operate it. Finally, the bank must activate the account in

order to allow the client to deposit, withdraw, or consult the

balance. Table 2 shows symbols for this example. Symbols

are grouped by category.

The following example provides the description of one

symbol to show how the descriptions of notion and

behavioral responses conform to the template defined.

Descriptions of symbols have underlined words; these

words are expressions that are defined in LEL too. They

represent a kind of link which can be navigated to explore

the definition of the other word. The symbol is client, and

as it is a subject, its notion describes who a client is, while

the behavioral responses describe the actions the client can

perform on his account (Fig. 1).

4 Identification of crosscutting concerns within LEL

Our approach relies on the LEL in order to identify

crosscutting concerns. The LEL must be constructed as

usual; once it is built, the requirements engineer must make

groups of symbols according to the state identified in LEL.

Then, the references from the behavioral responses must be

counted. After that, the strategy ranks groups ordering by

probability, from the most probable to the least probable

crosscutting concerns candidates. It is important to

emphasize that the strategy only ranks the concerns

according to their possibility to be considered crosscutting,

and the strategy does not determine a limit above which all

concerns are crosscutting. Moreover, the approach cannot

ensure that the group with the highest rank is effectively a

crosscutting concern, because the group might have core

symbols which could alter the counting. That is, the

requirements engineer must analyze each group in partic-

ular in order to determine if the group is composed of

crosscutting concerns symbols, which makes the whole

group a crosscutting concern. If the group has core symbols

which alter the values, then, although the group is ranked

high, it must not be considered a crosscutting concern. This

distinction between core symbols and crosscutting con-

cerns symbols must be drawn by the requirements

engineer.

The detailed steps to the approach are as follows:

(i) Construction of LEL organized into groups. The LEL

must be constructed as usual, describing the notion

and behavioral responses for every symbol. Then,

each symbol must be related to a state.

(ii) Reference counting. The references from each sym-

bol to the behavioral responses of another group’s

symbols must be counted. Then, the counts for the

whole group must be summed up, as the basis of the

approach is finding group candidates for crosscutting

concerns.

(iii) Ranking of groups. Groups of symbols must be

sorted out according to their probability of being

crosscutting concerns candidates.

(iv) Final analysis. The most suitable groups to qualify as

crosscutting concerns must be identified. The strat-

egy ranks the groups, and the requirements engineer

must look into each group to determine if the whole

group can be considered a crosscutting concern or if

there are core symbols which could have altered the

rank of the group.

Figure 2 illustrates this process.

The essence of our approach is based on identifying

crosscutting concerns as the symbols most frequently

Table 2 Symbols of the banking application grouped by category

Category Symbols

Subject Bank

Client

Object Account

Log

Verb Open an account

Activate

Record

Verify

Operate

Deposit

Withdraw

Consult balance

State Signed

Blocked

Activated

Subject: client
Notion
Person that opens an account at the bank
Behavioral responses
The client can deposit money into his account.
The client can withdraw money from his account.
The client can consult balance from his account.

Fig. 1 Client symbol

description

Requirements Eng (2015) 20:139–161 145

123

www.manaraa.com

referred to by the behavioral responses of other symbols

[1]. The approach is complex as it has to deal with a large

number of symbols. We will now explain the basic

mechanism of the approach, going into detail in the fol-

lowing sections.

Consider the following verb symbols and their behav-

ioral responses. The example does not show a complete

definition for every symbol, that is, their notion and

behavioral responses, because our approach only makes

use of behavioral responses (Fig. 3).

For example, verbs deposit, withdraw, and consult

have references to verbs verify and record in their

behavioral responses. These references are marked in

dark gray in Table 3. In Fig. 4, a directed graph shows

the links between symbols deposit, withdraw, and consult

and symbols record and verify. This means that besides

the basic functionality of deposit, withdraw, and consult,

each of the verbs must perform the acts of verifying and

recording in order to complete the whole functionality.

Since the essence of our approach leads to the identifi-

cation of the most frequently referred to symbols, and

record and verify are referred to by deposit, withdraw,

and consult, then our approach identifies record and

verify as crosscutting concerns. It is important to notice

that this is the basis of our approach, but in fact, the

approach also uses state symbols and makes groups

according to them.

As it has been mentioned previously, the essence of

the approach lies in analyzing the references between the

behavioral responses of symbols. We propose doing that

because the references in the behavioral responses have a

connection with invocation of procedures in source code.

In fact, the behavioral responses of verb symbols are a

kind of module decomposition, but this analysis is not

performed at the level of symbols. While constructing

LEL we do not have a building block as we do in

requirements, design, or code, so we define a group of

Fig. 2 The approach in a nutshell

Verb: Deposit
Behavioral responses
The bank must verify that the person who operates is the owner of the account.
The bank adds the money to the account.
The bank records the operation in a log.

Verb: Withdraw
Behavioral response
The bank must verify that the person who operates is the owner of the account.
The bank must check that the account has enough money to perform the withdrawal.
The bank must check that the owner of the account has not withdrawn money more times than the limit allows.
The bank records the operation in a log.

Verb: Consult the balance
Behavioral responses
The bank must verify that the person who operates is the owner of the account.
The bank shows the amount.
The bank records the operation in a log.

Verb: Record
Behavioral responses
Bank records operations in the log.

Verb: Verify
Behavioral responses
Bank verifies identity of the client.

Fig. 3 Deposit, withdraw, consult the balance, record, and verify symbols description

146 Requirements Eng (2015) 20:139–161

123

www.manaraa.com

symbols (cluster) determined by states as the building

block we will use to analyze references. We have chosen

to make groups of symbols with states because the state

symbols in LEL model the nodes of a state machine, and

Mahoney [20] and Mahoney and Elrad [21] claim that

crosscutting behavior is often modeled using state

machines. The reason for this lies in that applications are

complex reactive systems with state machines describing

their behavior. Thus, the application reacts (responds) to

a stimulus according to its state. Sometimes, only one

state reacts to a stimulus, while some other times, dif-

ferent states react to the same stimulus. That is, there are

stimuli which crosscut many (maybe all) of the states.

Clearly, the stimuli which crosscut all of the states are

crosscutting concerns, because they are concerns for the

entire state machine.

As an example of crosscutting concerns modeled as a

state machine, consider the access control to a bank

account. The system asks for a password to gain access to

deposit, withdraw, and consult balance. Accepting pass-

word is a state where an automatic teller machine (ATM)

waits for the client to type 4 digits; after that, the system

verifies the password entered. If the password is incorrect,

the system waits for a new password, but if it is correct, the

system displays a menu and waits for the operation the

client wants to perform: deposit, withdraw, or consult the

balance. In addition, in certain states, the session can be

canceled. As cancellation can occur in many different

states, the implementation needs duplicated code in each

state in order to handle cancellation. This duplicated code

must in fact be factorized in aspects, as cancellation is a

crosscutting concern. We argue that LEL description

organized into states will allow for a similar analysis and

will identify the same crosscutting concerns. Figure 5

shows the state machine.

The following sections describe each step to the

approach.

4.1 Construction of LEL organized into groups

Our approach demands that LEL symbols be organized into

state symbols. It is necessary to make groups of symbols

because we need to modularize the knowledge in building

blocks in order to determine which building blocks are core

functionality and which are crosscutting concerns. As a

software system can be reduced to a state machine [20, 21],

and as these states are natural to the application, we group

symbols according to states. The process of identification

and definition of symbols includes the following steps:

(i) The first step is LEL construction. LEL must be built

by performing: (a) identification of symbols; (b) cat-

egorization of each symbol; (c) description of symbols

Table 3 Adjacency matrix of

references between symbols of

the banking application

B
an

k

C
lie

nt

A
cc

ou
nt

L
og

O
pe

n
an

 a
cc

ou
nt

A
ct

iv
at

e

R
ec

or
d

V
er

if
y

O
pe

ra
te

D
ep

os
it

W
ith

dr
aw

C
on

su
lt

ba
la

nc
e

Si
gn

ed

B
lo

ck
ed

A
ct

iv
at

ed

Bank 1 1 1 1 1 1 1
Client 3 1 1 1
Account 3 1 1 1
Log 2 1 2 1
Open an account 1
Activate 1 1
Record 1 1
Verify 1 1
Operate 1 1
Deposit 3 2 1 1 1 1
Withdraw 4 3 1 1 1 1
Consult balance 3 1 1 1 1 1
Signed 1 1 1 1 1
Blocked 1 1 2 1 1 1
Activated 1 1 1

Fig. 4 References to symbols verify and record

Requirements Eng (2015) 20:139–161 147

123

www.manaraa.com

according to the category; and (d) identification of

synonyms. In order to identify symbols, if written

material is analyzed, the most frequent words must be

considered; if oral communication is analyzed, words

which are pronounced with stress must be considered.

Categorization and description of symbols must be

done according to the basic categorization which

determines the description of notion and behavioral

responses. Although our approach only deals with

behavioral responses, it is important to describe

notions while describing each symbol. Notions are

significant because their description helps to identify

synonyms. Two symbols with a similar description of

notion are candidates for synonyms. Notions are also

important because they may contain words that must

be also described in LEL, so they constitute a source

of symbols too.

(ii) The second step is to identify the main symbols in the

application. A subject or an object which is a

principal element in the application language and

which has an associated state machine must be

considered. In the banking application, the following

could be candidates for main symbols: account,

client, bank, deposit, withdraw, and consult balance.

However, only account, client, and bank are consid-

ered because they correspond to subject and object,

respectively. Finally, from the previous symbols, only

account is considered the main symbol of the

application because it has an associated state

machine. All the states wherein the object or subject

can be must be identified (LEL has a symbol category

which is ‘‘state’’). The symbols for the banking

application are signed, blocked, and activated. The

associated state machine is very simple. The first state

is signed, which has a transition to blocked. Then,

blocked has a transition to activated which is the final

state.

(iii) For every symbol (subjects, objects, and verbs), we

must identify to which state symbol it is related. A

symbol could be associated with one state for

different reasons. It could be related because the

symbol appears or is created in that state. Alterna-

tively, the symbol may be coupled or more involved

with the state (although the symbol is created in a

previous state). Table 4 shows the symbols of the

banking application related to each state. Detailed

guidelines to relate symbols are listed below:

• A symbol is related to a state because…

• the action can only be performed in that state.

• the object can only be used in that state.

• the subject can only act in that state.

• A symbol is related to a state because the symbol

is created in that state.

• A symbol is related to a state because although

the symbol is created in another state…

• the action is performed frequently in this

state.

• the object is repeatedly used in this state.

• the subject performs many actions in this

state.

• The initial state groups symbols created before

the beginning of the workflow.

It is worth mentioning that we propose an analysis at

group level because an analysis at the level of symbols may

be problematic, since symbols will not necessarily be

represented as modules, while states describe a conceptual

entity which in some way will be represented in the final

application. In the example, verify and record would be

aspects, but it is only a matter of granularity. We cannot

Fig. 5 State machine of the ATM operation

Table 4 Symbols related to each state in the banking application

State Subject Object Verb

Signed Bank Account Open an account

Client

Blocked Log Activate

Record

Verify

Activated Operate

Deposit

Withdraw

Consult balance

148 Requirements Eng (2015) 20:139–161

123

www.manaraa.com

ensure that every symbol identified will be an aspect,

because it could have a very low level of granularity.

4.2 Reference counting

Reference counting consists in calculating the number of

references from behavioral responses of symbols of each

group to symbols in other groups. It is important to exclude

references from the same group, because we want to

measure the coupling among different groups. Then, the

average of references is calculated according to the number

of symbols that the group has. This average must be used

instead of the absolute frequency because groups can have

very different numbers of symbols, and bigger groups need

to have proportionally more references than smaller ones to

be considered coupled. Thus, general average of a group is

calculated by counting references from behavioral

responses of symbols of other groups to any symbol of the

group (considering all categories). Then, this value must be

divided by the number of symbols. In addition to this, it is

important to count the references from each group sepa-

rately in order to measure the scattering among different

groups. Finally, in order to obtain accuracy in the analysis,

the average of references must be calculated by categories:

subject, object, and verbs. Hence, average by category

(subject, object, and verbs) is calculated by counting ref-

erences from behavioral responses of symbols of other

groups to the symbols of specific category of the group.

Then, this value must be divided by the number of symbols

of the considered category. This distinction is important,

because traditional methodologies analyze only verbs,

while our approach also considers subjects and objects.

Therefore, these data can be used to compare our results to

those from other methodologies. The algorithm in Fig. 6

summarizes the counting strategy. Table 5 shows the ref-

erences between symbols grouped by states. Self-refer-

ences, of course, are removed.

Table 6 summarizes the references to each state grouped

into categories of LEL symbols, and it also shows general

values. Let us explain values for the first group, signed. The

first column, number of groups that have references, has a

value of 2 because group signed has references from the

other two groups: blocked and activated. Then, the fol-

lowing column gives more detail as to the number of ref-

erences to the whole group, and the three following

columns show references to each category of symbols. The

last column, average of references to verbs, has a null

value, because the signed group has only one verb, open an

account, and it has no references. Then, the column aver-

age of references to objects has a value of 11, because the

signed group has only one object, account, which has 3

references from the blocked group and 8 references from

the activated group, so the total of references is 11. As it is

only one symbol, the average of total references divided by

the number of symbols is 11. The column average of ref-

erences to subjects has a value of 10, because the signed

group has 2 subjects, bank and client. Bank has 6 refer-

ences from blocked and 10 references from activated,

making a total of 16 references. The Client symbol has 2

references from blocked and 2 references from activated,

which gives a total of 4 references. Therefore, client and

bank have a total of 20 references, and the average of

references to subjects is 10 (20 references divided by 2

subjects). Finally, signed has a grand total of 31 references

(11 references to the object and 20 references to the sub-

jects), and as the group has 5 symbols (signed, bank, client,

account, and open an account), the general average is 6.2.

4.3 Ranking of groups

Van Den Berg and Conejero [32] define two characteristics

that determine the presence of crosscutting concerns:

scattering and tangling. He states that scattering occurs

when ‘‘a source element is related to multiple target ele-

ments,’’ whereas tangling occurs when ‘‘a target element is

related to multiple source elements.’’ In our approach, we

refer to elements (source and target) as a group of symbols.

We use the references from behavioral responses in order

to measure tangling and scattering. Hence, scattering and

tangling can be interpreted as (i) different groups that refer

Fig. 6 Counting strategy algorithm

Requirements Eng (2015) 20:139–161 149

123

www.manaraa.com

T
a
b
le

5
R
ef
er
en
ce
s
b
et
w
ee
n
d
if
fe
re
n
t
g
ro
u
p
s
o
f
th
e
b
an
k
in
g
ap
p
li
ca
ti
o
n

S
ig
n
ed

B
lo
ck
ed

A
ct
iv
at
ed

S
ig
n
ed

B
an
k

C
li
en
t

A
cc
o
u
n
t

O
p
en

an

ac
co
u
n
t

B
lo
ck
ed

L
o
g

A
ct
iv
at
e

R
ec
o
rd

V
er
if
y

A
ct
iv
at
ed

O
p
er
at
e

D
ep
o
si
t

W
it
h
d
ra
w

C
o
n
su
lt

b
al
an
ce

S
ig
n
ed

S
ig
n
ed

1

B
an
k

1
1

1
1

C
li
en
t

1
1

1

A
cc
o
u
n
t

1
1

1

O
p
en

an

ac
co
u
n
t

B
lo
ck
ed

B
lo
ck
ed

1
1

2
1

1

L
o
g

2
2

1

A
ct
iv
at
e

1
1

R
ec
o
rd

1

V
er
if
y

1
1

A
ct
iv
at
ed

A
ct
iv
at
ed

1
1

O
p
er
at
e

1
1

D
ep
o
si
t

3
2

1
1

1

W
it
h
d
ra
w

4
3

1
1

1

C
o
n
su
lt

b
al
an
ce

3
1

1
1

1

150 Requirements Eng (2015) 20:139–161

123

www.manaraa.com

to them and (ii) average of references. These two variables

determine 4 possible situations. Group candidates for

crosscutting concerns must maximize both variables,

because (i) the number of different groups indicates how

scattered the group is, while (ii) the average of references

indicates how coupled (tangled) the group is. Groups which

maximize (i) but have a low rank in (ii) are groups which

are referred to by many other groups, but have a low

general average of references. One scenario of the low

general average is the one in which references are all

concentrated on a subset of symbols of the group. So, this

subset of symbols could be considered a candidate for

crosscutting concerns. Groups which have a low rank in

(i) but have a high value in (ii) are groups which are tightly

coupled to only a few groups, and they are not scattered

enough to be considered crosscutting. Finally, groups

which minimize (i) and minimize (ii) must be ignored.

Figure 7 shows a diagram where the x axis represents

average of references (i.e., how tangled a group is, -ii-),

while the y axis represents the different groups that have

references (i.e., how scattered they are, -i-).

The dispersion of groups from the banking application

according to number of groups that have references and the

general average of references is very particular. Since the

banking application has only 3 groups and each group has

references from the other 2 groups, all states are in the

same y value, but as they have a different general average

of references, they are spread along the x axis. In this sit-

uation, it is easy to conclude a linear order, because all the

groups have the same number of different groups that refer

to them, and we only need to sort them according to

average of references. Therefore, the first candidate to be

considered a crosscutting concern is the group with the

highest number of average of references, that is, number 1.

Then, it is followed by number 2, and finally by number 3.

In this example, the diagram is not necessary, and it can be

deduced directly from Table 6. Table 7 shows the final

order.

4.4 Final analysis

An analysis must be performed after groups and reference

counting have been carried out. It consists in analyzing and

determining which symbols could alter and bias the rank-

ing of groups. This analysis must be done manually

because the requirements engineer is the one who knows

the application domain and can decide which part will be

designed as core and which as crosscutting concern. The

strategy proposes ranking the groups (and symbols) in

order to help the requirements engineer make the decision.

Some issues are obvious crosscutting concerns, such as

quality attributes, but there are others like functional

crosscutting concerns that must be detected in the appli-

cation domain.

The requirements engineer has to pay attention to the

main symbols (objects, subjects, and verbs) in the appli-

cation language, which will not be modularized as cross-

cutting concerns, because they constitute the core of the

application. Therefore, if a symbol has very high values

and it causes the group to have very high values because of

its presence, the group must not be considered. However,

groups with homogenous values in all of its symbols and

with high ranks in both variables must be considered

crosscutting concerns. Summing up, the steps to perform

final analysis are as follows:

Table 6 Reference counting for the groups of the banking application

Number of groups that have

references

General average of

references

Average of references

to subjects

Average of references

to objects

Average of references

to verbs

1 Signed 2 6.2 10.0 11.0 0

2 Blocked 2 2.6 0 4.0 2.7

3 Activated 2 2.4 0 0 2.3

Crosscutting
concern

candidates

Crosscutting
in some

subgroup of
symbols

To be ignored Tightly
coupled to few

groups

Average of references

D
if

fe
re

nt
 g

ro
up

s
th

at
 r

ef
er

Fig. 7 Level of scattering and coupling and its implication for the

identification of crosscutting concerns

Table 7 Final order of the groups from the banking application

Number of groups

that have references

General average

of references

1 Signed 2 6.2

2 Blocked 2 2.6

3 Activated 2 2.4

Requirements Eng (2015) 20:139–161 151

123

www.manaraa.com

• Inspect symbols (mainly with high ranks) in every

group to determine if they are core symbols.

• Not count the core symbols’ references.

• Recalculate the ranking of groups.

The core symbols with high ranks in the banking appli-

cation are bank and account. There are other core symbols

such as deposit, withdraw, and consult balance. Table 8

shows the core symbols shaded in gray. These core symbols

are shaded only in the columns because the references they

receive must be excluded from the counting of the group.

Table 9 calculates again the reference counting without

considering the references the core symbols receive. With

this new result, the groups are reordered into blocked, acti-

vated, and signed.

Table 10 summarizes the analysis which determines that

only the blocked group must be considered a crosscutting

concern.

5 Case studies

We have used our approach in two real applications. One

application is part of the tax system in Argentina [3], and

the other is a proprietary system of a company which

publishes news from different Latin American countries in

a Web portal [3]. The applications have been implemented,

and they are in a maintenance period, and neither of them

has been designed with aspects for different reasons. The

antitax evasion system was developed while the team was

not acquainted with aspect technology; moreover, the tools

used do not support this technology. In relation to the Web

portal application, when its development started, require-

ments were very poor and aspectual functionality was not

detected. Afterward, the application was extended in a

disordered way and aspects were detected, but they were

never factorized as such.

Table 9 Reference counting for the banking application without considering core symbols’ references

Number of groups that have

references

General average of

references

Average of references

to subjects

Average of references

to objects

Average of references

to verbs

1 Signed 2 1.4 4.0 0 0

2 Blocked 2 2.6 0 4.0 2.7

3 Activated 2 2.5 0 0 2.5

Table 8 References between

different groups of the banking

application with columns

showing core symbols

Signed Blocked Activated

Si
gn

ed

B
an

k

C
lie

nt

A
cc

ou
nt

O
pe

n
an

 a
cc

ou
nt

B
lo

ck
ed

L
og

A
ct

iv
at

e

R
ec

or
d

V
er

if
y

A
ct

iv
at

ed

O
pe

ra
te

D
ep

os
it

W
ith

dr
aw

C
on

su
lt

ba
la

nc
e

Si
gn

ed

Signed 1
Bank 1 1 1 1
Client 1 1 1
Account 1 1 1
Open an account

B
lo

ck
ed

Blocked 1 1 2 1 1
Log 2 2 1
Activate 1 1
Record 1
Verify 1 1

A
ct

iv
at

ed

Activated 1 1
Operate 1 1
Deposit 3 2 1 1 1
Withdraw 4 3 1 1 1
Consult balance 3 1 1 1 1

152 Requirements Eng (2015) 20:139–161

123

www.manaraa.com

One of the co-authors of this article has been working on

both applications for several years, and he knows them

very well. He has worked for more than 10 years with the

first application and for more than 3 years with the second

one. Although he built some partial LEL during develop-

ment of both applications, both these LELs needed to be

completed and checked. The fact that there were versions

of LELs previous to the development of this technique

(although they were incomplete) shows that the experiment

was not biased.

It is important to mention that although both applica-

tions used in these case studies are part of bigger systems,

the size of the application is big enough to show the

approach is applicable and scalable to larger systems. The

size of the applications calculated in unadjusted use case

points [17] is 1125 for the Tax application and 915 for the

News application. Both of them have more than 80 use

cases. The size of the LELs can be measured according to

the symbols described and the references between them.

The Tax application has 63 symbols and 160 references,

while the News application has 54 symbols and 121 ref-

erences. This information is summarized in Table 11. LEL

construction and calculation were performed using basic

and general purpose tools such as word processors and

spreadsheets, but note that we are currently working on a

specific tool [4] to assist in the application of the strategy.

We can justify the suitability and effectiveness of our

approach in 3 ways. First, the approach is described and

also justified in the previous section. Then, in this section,

effectiveness is justified in two more ways. At the end of

each case of study, we compare the results obtained by our

approach with the expert opinions of different people

involved with both systems. One of the experts is one of the

co-authors who were involved with both applications. He

gives his opinion from his experience as designer and

developer of the first application, and as requirements

engineer of the second one. Nevertheless, although he has a

qualified opinion, it is still subjective. So, as yet another

means to prove effectiveness, we present other expert

opinions which were gathered through structured inter-

views conducted with members of the development team,

in order to contrast the results from our approach with the

objective opinion of other people involved with the appli-

cation. The following questions were asked: (i) What role

did you play during development? (ii) how many years of

experience do you have? (iii) what are your academic

studies? (iv) which functionality do you consider to be

crosscutting concerns? (The interviewees were given LEL

groups and were asked to identify crosscutting concerns

from the groups.) and (v) justify your choice in the previ-

ous question.

The first application is rich in situations and actions that

are carried out during the prosecution phase. The second

application relies on technology, because many actions

which are developed make sense only within the computer

world. So, although we emphasize how important it is to

identify crosscutting concerns in analysis stage, we show

with the second case study that we can use the approach to

identify crosscutting concerns in source code too. Sec-

tion 5.1 describes the analysis performed in the antitax

evasion application, while Sect. 5.2 describes the analysis

of the Web portal.

5.1 The antitax evasion case study

When a citizen does not comply with his duty to pay debts,

the petitioner performs the necessary actions to get the debt

paid. The normal course of action involves the following:

(i) establishment of the debt; (ii) internal procedural mea-

sures; (iii) active procedural measures; (iv) pending pro-

cedural measures; and (v) liquidation of the debt.

The five steps indicated above are complex activities

that include the following tasks:

(i) Establishment of the debt: Situation where a taxpayer

has incurred a debt and he has dismissed the

opportunities to pay it.

(ii) Internal procedural measures: At this stage, a cost-

benefit analysis must be done, in order to determine if

the effort of claiming the debt is profitable. If it is

profitable, it is also necessary to determine if it is a

Table 10 Detailed analysis of each group of the banking application

Id State Description

1 Signed The bank and account symbols are the main subject

and object respectively in the application language

and they alter the values. Therefore, this group

must not be considered a candidate

2 Blocked This group has only objects and verbs, but references

are balanced among all of them. Therefore, this

group must be considered a candidate

3 Activated This group has only verbs, and references are quite

balanced among all of them. But these verbs are

considered main symbols in the language

application. Therefore, this group must not be

considered a candidate

Table 11 Measures of the application LELs and Use Case Points

from the case studies

Use

cases

Unadjusted use case

points

Symbols References

Tax 84 1,125 63 160

News 87 915 54 121

Requirements Eng (2015) 20:139–161 153

123

www.manaraa.com

critical debt (of a large sum of money, for example)

so as to take preventive actions.

(iii) Active procedural measures: They consist of 4 steps,

namely: bring a prosecution against the debtor in

court, obligate him to pay, adopt preventive mea-

sures, and finally obtain the sentence from the judge.

Since preventive measures could be taken in stage

(ii), the sequence of steps is not unique.

(iv) Pending procedural measures: They basically consist

in waiting for the debtor to voluntarily pay the debt.

It is expected that he will do it because his actions

are legally restrained by the preventive measures.

Preventive measures expire, so they must be renewed

if necessary. Nevertheless, if the debtor has belong-

ings (a car or a house), it is possible to perform an

auction to liquidate the debt if certain conditions are

fulfilled.

(v) Liquidation of the debt: At this stage, the prosecution

phase is finished, the debt is recovered, and the

preventive measures are lifted.

There are some situations that can alter the normal flow

of events:

(vi) Debt claim with payment: It occurs when a debt is

claimed, but it does not exist, because an adminis-

trative mistake has occurred and a claim is made by

mistake. Although the debt does not exist, the

taxpayer will have to pay administrative costs,

because he could have clarified this situation in

previous steps.

(vii) Moratorium: It is a mechanism that allows the

taxpayer to pay the debt in monthly payments.

(viii) Auction: Situation where the debtor has goods (a

car or house) which are auctioned to recover the

debt.

(ix) Administrative preventive measure: Situation where

it is not profitable to file a lawsuit to claim the debt.

So, an administrative preventive measure is adopted

in order to legally restrain the actions of the debtor

and force him to pay the debt.

When analyzing the antitax evasion application, we

defined the nine groups mentioned previously in order to

construct LEL and we performed the references counting

showed in Table 12. Figure 8 shows dispersion of groups

according to the number of groups that have references and

the general average of references.

In general, groups are located in the main diagonal

across Fig. 8, so it is easy to find a linear sequence to the

groups. Groups 2 and 1 are definitively in first and second

place, as their location are confirmed on the diagram of

Fig. 8 and the values of Table 12. Then, group 3 must be

considered, because it has approximately the same value of

average of references from groups 5, 6, and 7, but group 3

has a high value of different groups that refer to it. Then,

groups 7, 5, and 6 must be located. Groups 5 and 6 have the

same values of average of references and different groups

that refer to them, but group 5 is placed before group 6

because this group is only related to verbs, while group 5 is

related to subjects and verbs; this variety makes this group

the first. Then, group 8 must be located, because although it

is smaller than group 9 regarding average of references,

group 8 has a larger number of different groups that refer to

it. Group 8 has 2 different groups, while group 9 has only 1,

which is why it is not sorted in a different way. Finally,

groups 9 and 4 must be located.

Although Fig. 8 shows the dispersion of groups, it is

necessary to perform a detailed analysis for every group,

because a group could have a main symbol which may alter

the ranking values. Table 13 shows the detailed analysis,

and it finally identifies the crosscutting concerns.

Summing up, the groups that must be considered

crosscutting concern candidates (sorted out from the most

likely to the less) are Internal procedural measures, Mor-

atorium, Liquidation of the debt, and Administrative pre-

ventive measure.

One of the co-authors, who were involved in the

development, agreed that the four candidates identified by

the approach are candidates for crosscutting concerns. In

particular, he identifies in the first place moratorium and

liquidation of the debt as the most likely candidates,

because whatever the state the tax evasion trial is in, it

could continue with moratorium if the debt is real or it

could continue with liquidation of the debt if the debt is not

real. Therefore, the application needs to have functionality

to allow trials to be moved from some states to either of

these states. Then, after a more detailed analysis, the co-

author concluded that internal procedural measures and

administrative preventive measure are candidates for

crosscutting concerns. Internal procedural measures

reaches this status because this group has an object which

is frequently referred to by other groups. That means that in

the software application, there will be a resource (file, data

structure, or an object) that will be used from many dif-

ferent places. Administrative preventive measure is in a

similar situation because it has verbs which are frequently

referred to, that is, in the software application that there

will be invocation of methods or functions from several

places. So, just as it occurs in the banking application

where each operation has to be enriched with login and

authorization functionality, in this application many of the

states in which a trial can be must be enriched with func-

tionality to move the trial to moratorium and liquidation of

the debt. Moving means not only changing the state, but

also adjusting some things related to this change of state.

Then, as many groups refer to objects or verbs of internal

154 Requirements Eng (2015) 20:139–161

123

www.manaraa.com

procedural measures and administrative preventive mea-

sure, many states must be enriched with this functionality.

Apart from the co-author’s opinion, two people were

interviewed who were involved with the development of

the application and are acquainted with aspects technology.

One of them has 28 years of experience in the field and

fulfilled the roles of requirements engineer, designer, and

architect in the development of the application; the other

has 25 years of experience, and she was the project leader

and also fulfilled the role of requirements engineer in the

development of the application. Both of them have a

degree in computer science.

The first interviewee considered the following func-

tionality to be crosscutting concerns: Moratorium, Liqui-

dation of the debt, and Administrative preventive measure.

He based his opinion on the fact that trials follow a linear

sequence of steps; nevertheless, there are some steps that

are transversal to the linear steps. Moratorium is one of

them. At the beginning of the development, there was only

one point where a trial could get into moratorium, but at the

end of the development, it became an option that could be

reached no matter where the trial was. Administrative

preventive measure was similar to moratorium. Then, liq-

uidation of the debt was the final state of the events in the

trial, and it could only be reached from the previous step,

but as moratorium and administrative preventive measure,

liquidation could be reached from various states.

The second interviewee only considered moratorium a

crosscutting concern. She claimed that moratorium is a

privilege that can be accessed from any other situation in

which the trial is. Therefore, she considered it a crosscut-

ting concern because moratorium is extra functionality that

must be added in any situation in which the trial could be.

Although there were only two interviewees, they are

people with great experience, and it is meaningful that the

functionality they have identified as crosscutting concerns

was also identified by our approach. Our approach identi-

fied 4 candidates; one of the interviewees identified 3 of

them, and the other identified 1 of them. The group that our

approach considered most likely to be a crosscutting con-

cern was not selected by any of the two interviewees, but

the group ranked in second position was considered a

crosscutting concern by both interviewees.

After the analysis, both interviewees were asked why

they did not choose internal procedural measures as a

crosscutting concerns candidate. Both said that clearly, it is

Table 12 Reference counting for the groups of the tax evasion application

Number of groups that

have references

General average of

references

Average of

references to

subjects

Average of

references to objects

Average of

references to verbs

1 Establishment of the

debt

7 3.7 10 2.3 1.2

2 Internal procedural

measures

7 4.3 6 4.7 0

3 Active procedural

measures

8 2.0 2 3.3 0.5

4 Pending procedural

measures

1 0.7 0 0 0

5 Liquidation of the

debt

4 2.0 2 0 1.3

6 Administrative

preventive measure

4 2.0 0 0 2.2

7 Moratorium 4 2.3 0 0 1.7

8 Auction 2 1.0 0 0 2.0

9 Debt claim with

payment

1 3.0 0 0 2.0

Average of references

D
if

fe
re

nt
 g

ro
up

s
th

at
 r

ef
er

1 2

3

4

56 7

8

9

Fig. 8 Dispersion of groups from the tax evasion application

Requirements Eng (2015) 20:139–161 155

123

www.manaraa.com

not aspectual functionality, but after analyzing in detail the

symbols of this group, they admitted that it could probably

be considered a crosscutting concern.

5.2 The Web portal case study

The approach was also used to identify crosscutting con-

cerns in an application about a Web portal that presents

daily news. News items are developed by writers; editors

review them and decide whether to publish them or not.

The publication of news involves creating an HTML page

and some other formats to show on mobile phones and

other devices. Apart from different formats, some kind of

categorization must be done to news, too. The construction

of news items moves through different states until they are

finally published. These states are as follows: written,

accepted, HTML built, auxiliary versions built, catego-

rized, tagged, included in calendar, and published.

The first state is written. From that state, a news item

can go to a rejected state, which is a final state. But if the

news item is accepted, it reaches an accepted state; from

there, it goes to an html built state and after that to an

auxiliary versions built state. From this state, news can go

to none, one or all of the following states: categorized,

tagged, and included in calendar. Finally, the published

state can be reached.

The following table shows the nine groups related to the

nine states with reference counting for each state

(Table 14).

Group 3 is definitively the first one, since it has the

highest values in average of references and different groups

that refer to it. Then, groups 1 and 9 have the same value in

average of references, but group 1 has a high value in

different groups that refer to it, so the second place is for

group 1. Then, group 9 has a very low value in different

groups that refer to it (only 1), so the third position is for

group 4. Then, come all the groups with value 1 in different

groups that refer to them. Table 15 shows groups in a linear

order according to the analysis.

Table 16 shows the detailed analysis, and it finally

identifies the crosscutting concerns. In conclusion,

according to the analysis in Table 16, the only group that

must be considered a crosscutting concerns candidate is

html built.

Using our approach, it is easy to identify group html

built as a crosscutting candidate, because it is one of the

Table 13 Detailed analysis of each group from the tax evasion application

Id State Description

2 Internal procedural

measures

Symbol petitioner is a main subject in the language application and it alters the values. Nevertheless, the

average of references to subjects only reaches a medium level, while there is an object goods which has many

references and must be considered. Therefore, this group must be considered a candidate

1 Establishment of the debt This group has the debtor symbol, which is a main subject in the language application, so it alters the values.

Debtor has 32 references while the general average is 3.7. If debtor did not belong to this group, the general

average would not be so high. So, this group must not be considered a candidate

3 Active procedural

measures

Symbol prosecution is a main object in the language application. This symbol has 10 references, while the

general average of the group is 2. So this symbol alters the values, and this group must not be considered a

candidate

7 Moratorium The number of groups that have references to this group and the general average is ranked as medium, so this

group is quite scattered and it is quite coupled. This group has a high average of references to verbs.

Therefore, this group corresponds with traditionally identified crosscutting concerns, so it must be considered

a candidate

5 Liquidation of the debt The number of groups that have references to this group and the general average of references are ranked as

medium, so this group is quite scattered and it is quite coupled. This group has a medium average of

references to verbs. Therefore, this group corresponds with traditionally identified crosscutting concerns. So

it must be considered a candidate

6 Administrative preventive

measure

The number of groups that have references to this group and the general average of references are ranked as

medium, so this group is quite scattered and it is quite coupled. This group has a high average of references

to verbs. Therefore, this group corresponds with traditionally identified crosscutting concerns, so it must be

considered a candidate

8 Auction The number of different groups that refer to this group as well as the general average of references is low, so

this group must not be considered a candidate

9 Debt claim with payment Although this group has a high general average of references, the number of different groups that refer to this

group is low. This group is coupled with few groups, in fact it is coupled with only 1 group. So this group

must not be considered a candidate

4 Pending procedural

measures

The number of different groups that refer to this group as well as the general average of references is low, so

this group must not be considered a candidate

156 Requirements Eng (2015) 20:139–161

123

www.manaraa.com

three groups that has more than 1 group with references to

it. But one of the co-authors was involved in this devel-

opment, and it was difficult for him to identify it without a

detailed analysis. At the beginning of the development, the

application did not have these requirements, so we did not

identify this functionality. But with the information used to

build this LEL and after analyzing it in detail, it can be

concluded that group html built has many verbs, in fact,

methods, or functions in the software application that will

be implemented in many other groups. So, the fact that this

group has some functionality that is widespread and used

by other groups justifies the essence of being crosscutting

concerns.

Apart from this opinion, an interview was conducted

with 7 members of the development team. According to

work experience, we can arrange the 7 members into three

groups. The most experienced group contains only one

member, the project leader/architect/designer/requirements

engineer of the team, a graduate in computer science with

12 years of experience. Then, there is a middle-

experienced group of 4 members with 3–5 years of expe-

rience; 1 of them is a graduate in computer science, and the

other 3 are students. All of them were designers and/or

developers. Finally, in the least experienced group are the

last two members of the team, students with less than

2 years of experience who had the role of developers.

The only group which was identified as crosscutting

concerns was html built. The majority of the members

identified it (4 out of 7). The most experienced member of

the team agreed with this view. He said: ‘‘Although I

thought that aspects were Auxiliary versions built, Cate-

gorized, Included in calendar and Tagged, after analyzing

the symbols in the html built group, I am completely sure

that this group must be the crosscutting concerns, because

it contains functionality which was added gradually and in

a disordered way within the application. Only when we

were advanced into the development of the application did

we realize that it would have been convenient to design this

functionality as crosscutting concerns.’’ Then, from the

middle-experienced group of people, 2 out of 4 agreed on

html built as crosscutting concerns. One argumentation in

favor said: ‘‘The methods which are grouped into html built

are clearly methods shared by the whole application and,

above all, they are methods which have suffered many

changes during software development.’’ There is another

argumentation in favor of html built, but with some doubts:

‘‘Although it is complex to understand the design of the

application through groups of states, analyzing methods

which are located in each of the groups contributes to a

better understanding. Some of the methods defined in html

built could be located in another group, and I am not

convinced if it is necessary to factorize them as aspects. If

this is done, several aspects must be identified and not only

one.’’ Finally, one argumentation against the identification

also claims that some kind of factorization is necessary, but

they are not sure if it must be done using aspect

technology.

Table 14 Reference counting for groups from the news portal application

Number of groups that

have references

General average of

references

Average of references

to subjects

Average of references

to objects

Average of

references to verbs

1 Written 5 2.5 2 6.3 0

2 Rejected 1 0.5 0 0 0

3 Accepted 5 13.4 32 0 1.0

4 Html built 3 0.9 0 0.3 1.4

5 Auxiliary

versions built

1 0.2 0 0 0.2

6 Categorized 1 0.6 0 0 0.2

7 Included in

calendar

1 1.3 0 0 1.0

8 Tagged 1 1.0 0 0 0.5

9 Published 1 2.5 0 0 1.0

Table 15 Final order of groups from the news portal application

Number of groups that

have references

General average of

references

3 Accepted 5 13.4

1 Written 5 2.5

4 Html built 3 0.9

9 Published 1 2.5

7 Included in

calendar

1 1.3

8 Tagged 1 1.0

6 Categorized 1 0.6

2 Rejected 1 0.5

5 Auxiliary

versions built

1 0.2

Requirements Eng (2015) 20:139–161 157

123

www.manaraa.com

In this case, opinions about identification of crosscut-

ting concerns are divided. Although the majority agreed

on their views, it is not a great majority. Moreover, some

of the people that identified the same crosscutting con-

cerns are not really convinced of that. So, it is important

to mention that the approach identifies crosscutting con-

cern candidates that experts must otherwise analyze in

detail to determine whether they are or not crosscutting

concerns. It is worth pointing out that it does not matter

if html built is a crosscutting concern or not. What is

important is that our approach suggests crosscutting

concern candidates, and even if team members do not

agree on that, they agree that if there are crosscutting

concerns, it must be html built.

6 Conclusions

In this paper, we have described an approach for identi-

fying crosscutting concerns in the application language

captured by the LEL. We have provided three real world

examples to illustrate how LEL can be analyzed in order to

identify crosscutting concern candidates. We have shown

that in essence our approach has similarities with many

other techniques. In spite of these similarities, our approach

has the unique advantage of being very easy to use, since it

begins with a description of the application language, a

task which can be carried out by any stakeholder without

any kind of expertise and with little effort. As simple as it

is, the description produced in LEL is very rich, and it can

contain knowledge which may not be present in other

products of software development. Taking into account that

LEL is a model of the application language, our approach

brings up discussion of crosscutting modularization at a

very early stage in the development process. This strategic

information at hand is helpful to make critical architectural

decisions. It is a great benefit to have such important data

to build the best design possible at the beginning of the

construction. Making changes in the middle of the devel-

opment process can be very difficult, and sometimes, the

necessary changes in the application are so enormous that

they are considered impossible.

Our approach identifies crosscutting concerns as early as

possible in the software development process. We have

already proved that it is possible to perform this analysis

while learning the application language. We have also

shown that performing this identification early brings

benefits to the development process. If we identify cross-

cutting concerns while capturing and understanding the

application language, we will have more information

available to write requirements, to define the architecture,

and to design the software. This being said, the analysis

proposed can be done at almost any stage of the software

development, whether in requirements or source code, too.

The key element that allows for this is LEL. We use LEL to

synthesize the knowledge of the application language. LEL

organizes the knowledge into symbols which have con-

nections to other symbols, and theses connections build a

net (a hypertext). In this net, symbols are grouped

according to states which arise from the application lan-

guage. We then apply our approach to this model. But such

a model can also be built from requirements or source

code. These products capture the knowledge relevant to the

application, and we can use them to construct LEL. Of

course, the language elicited from domain experts will be

richer than that captured from the source code. Moreover,

the knowledge elicited from the application domain will be

more abstract than the knowledge extracted from the

source code. Thus, the strategy proposed will make a better

Table 16 Detailed analysis of each group from the news portal

application

Id State Description

3 Accepted This group has the publisher subject symbol,

which is a main subject in the language

application, so it alters the values. Publisher

has 63 references while the general average

is 13.4. If publisher did not belong to this

group, the general average would not be so

high. So this group must not be considered a

candidate

1 Written Symbol content has 12 references and a

general average of 2.5. But content is a main

object in the language application, so this

group must not be considered a candidate

4 Html built This group has several verbs which are all

referred to in the same way by three other

groups. So this group must be considered a

candidate

9 Published Although this group has a high value in

general average of references, there is only 1

group with references to it. So this group

must not be considered a candidate

7 Included in

calendar

Although this group has a high value in

general average of references, there is only 1

group with references to it. So this group

must not be considered a candidate

8 Tagged Although this group has a high value in

general average of references, there is only 1

group with references to it. So this group

must not be considered a candidate

6 Categorized This group has a low value in general average

of references, and there is only 1 group with

references to it. So this group must not be

considered a candidate

2 Rejected This group has a low value in general average

of references, and there is only 1 group with

references to it. So this group must not be

considered a candidate

5 Auxiliary

versions built

This group has a low value in general average

of references, and there is only 1 group with

references to it. So this group must not be

considered a candidate

158 Requirements Eng (2015) 20:139–161

123

www.manaraa.com

use of the language captured from the application domain

because it is designed to work with high-level abstraction

artifacts. This means the results will be also abstract, that

is, coarse-grained. Late steps in software development such

as codification make possible to apply techniques which

identify crosscutting concerns more accurately, but early

stages have high-level abstraction artifacts, so the analysis

cannot produce a result different from a coarse-grained

one. Therefore, although LEL can be built from require-

ments or source code, we do recommend building it

directly from the application language, so as to apply the

approach early on and make good use of the available

knowledge, avoiding reworking of items.

LEL, the technique used to model the language appli-

cation, is a very convenient tool for experts with no tech-

nical skills, although people with such skills will obtain

more profit from its use. The convenience of LEL as a tool

arises from 3 significant characteristics: It is easy to learn,

it is easy to use, and it has good expressiveness. There are

several publications which use LEL in complex domains

and validate these claims. Gil et al. [16] state that ‘‘building

a LEL in an application completely unknown to the

requirements engineer and with highly complex language

can be considered a successful experience, since users

stated that requirement engineers have developed a great

knowledge about the application.’’ In another work, Cys-

neiros and Leite [15] state that ‘‘the use of LEL was very

well accepted and understood by the stakeholders. As these

stakeholders were nontechnical experts from a specific and

complex domain, the authors believe that LEL can be

suitable to carry out in many other domains.’’ These are

examples of real uses of LEL which confirm our claims,

but we can justify its characteristics, too. LEL is easy to

learn because it uses natural language, and the expert has to

write sentences according to standard grammar rules. The

expert must only be trained in the template that guides the

description of every symbol. Then, it is also easy to use

because the expert only has to describe symbols trying to

maintain a similar level of abstraction in each description.

Obviously, the identification of links between symbols is a

time-consuming task, but although the expert must have in

mind a cyclic definition of symbols, the LEL description

must be assisted by a tool which defines the links between

symbols. Finally, LEL expressiveness is anchored on the

fact that it contains colloquial descriptions. Descriptions

can be short and simple, or they can be complex and

longer, but they can be phrased in a colloquial way.

Therefore, these three characteristics allow the expert to

pay attention to the knowledge he has to organize and

model with LEL, and he does not have to worry about how

to describe this knowledge.

While traditional approaches rely on actions to identify

crosscutting concerns, our approach considers not only

actions but also other semantic categories. LEL organizes

its symbols into four basic categories: subjects, objects,

verbs, and states. We use all the categories to identify

crosscutting concerns. Verb symbols best help to identify

crosscutting concerns; nevertheless, subjects, objects, and

states also help to confirm the crosscutting concerns iden-

tified by the verbs. What is more, they may identify

crosscutting concerns which were not identified by verbs.

In LEL description, the same action may be described by

different verbs, i.e., synonyms, but they might not be

identified. If the action is related to the same object, the

fact that the object is the same one will identify a cross-

cutting concern, even if the action will not identify it.

Although our approach has significant characteristics

which make it suitable to use in most cases, there are still

some issues which we must continue working on. These

will be pointed out in the following paragraphs.

Our approach relies on identifying a state machine in the

language application, in order to identify which states can

be considered crosscutting concerns. We have to continue

working on more applications in order to determine if it is

possible to have applications with no state machines or

with more than one. In the first case, our approach cannot

be used. In the second case, if there is more than one state

machine, we have to analyze if all of them have the same

level of importance. If they do, we must find a way to adapt

our approach to that situation. Basically, we have to con-

sider how state machines interact with each other and how

to organize LEL symbols according to these state machines

in order to perform the counting.

The detail level used to describe LEL is also important.

Symbols must be identified uniformly, and they must be

described using the same level of abstraction because both

these elements have an influence on the results. Our

approach involves a counting scheme between the behav-

ioral responses of symbols from one state to another. If one

state has many symbols which are not correct, this state

could in fact have many more references and it might

become a crosscutting concern when it should not be. We

use an average of references instead of absolute frequency

of references to avoid this defect. Nevertheless, it is worth

highlighting that in LEL construction, only symbols from

the language application that are really relevant to the

system must be considered. At the same time, descriptions

of behavioral responses affect our approach in the same

way. If one symbol has an extensive description with a

great level of detail, it will produce many references that

will affect the counting schemes. This extensive descrip-

tion may refer to many symbols from one or various states,

and it would cause the position of the states in the ranking

to be higher than the real rank. Therefore, the identification

of symbols is important as well as the description of

behavioral responses. We will continue working on

Requirements Eng (2015) 20:139–161 159

123

www.manaraa.com

determining some conditions (maybe metrics) that LEL

must fulfill in order to guarantee our results.

In relation to the previous topic, there is an issue con-

nected with the use of abstract and concrete symbols.

During the description of a language application, a symbol

can be identified which generalizes the essence of many

other symbols. In this situation, the symbols are organized

in a kind of ‘‘is a’’ hierarchy. That means concrete symbols

are in fact symbols with the same essence as abstract

symbols. Therefore, references to the concrete symbols can

be made to the abstract symbols as well. As a result,

counting will be different when only concrete symbols are

referred to and when only abstract symbols are referred to.

This situation must be analyzed in detail.

As mentioned earlier, we are working on an empirical

evaluation in order to show the validity of our approach

that takes into account the work described in [8]. We are

going to perform an experiment where a group of people

will work with a well-established approach and another

group will work with our approach. At the end, we are

going to compare the results from both approaches. People

with knowledge of aspect-oriented programming will be

selected, but these people will not have experience in the

approach they are going to use in order to identify cross-

cutting concerns. We are going to present them with an

application domain which will be unknown to them. Some

people will have to apply the Theme/Doc Approach [6],

and others will have to apply our approach. In order to

accomplish the objective of validation, our approach must

identify at least all the crosscutting concerns identified by

the Theme/Doc. We do not expect to detect exactly the

same crosscutting concerns, but we do expect that the

crosscutting concerns identified by Theme/Doc will also be

identified by our approach (this is known as recall). We

have chosen the Theme/Doc approach to compare with,

because it is an accepted and widely recognized approach

which has been book published. If our approach identifies

the same crosscutting concerns detected by Theme/Doc

(and also enrich them), we will have shown validity. Both

approaches work with different input; Theme/Doc needs

requirements, and our approach needs LEL. We are going

to provide this material in the experiment. Explanations

about the two approaches will be given, along with some

documentation on how to apply them. After this, people

will be left to work at their own pace. After a week, the

results will be compared. We do not intend to analyze

learning or application time; the sole objective is com-

paring the crosscutting concerns identified. Our approach

represents an addition to LEL modeling; it is not our

intention to provide an approach in order to replace other

approaches. Our aim is to provide a tool for people that

work with LEL to identify crosscutting concerns. If we can

verify that our approach identifies the same crosscutting

concerns as Theme/Doc and more, we can consider the

experiment a success [24, 31].

Finally, the use of a tool is clearly necessary to apply our

approach. There are two important reasons to consider a

tool. First, it is essential to manage LEL symbols and its

references. Second, it is necessary to automate the counting

schemes. That being said, there is still an activity that

cannot be assisted by a tool: the final decision about

whether a group is a crosscutting concern or not. This final

decision must be decided manually because the require-

ments engineer or designer is the one who organizes the

concerns determining which are core or crosscutting. This

decision must be taken considering the knowledge about

the application domain and using the information provided

by the strategy about the concerns which are spread all over

the system.

In relation to the management of symbols, a word pro-

cessor could be used to write LEL. In fact, at the beginning

of the construction of LEL, the use of a word processor

could be suitable in order to transform a narrative

description into a set of symbols with its descriptions.

However, the most time-consuming task is not LEL writing

but link construction. It demands great effort to analyze

whether every word written in a description is a link or not.

Furthermore, if a new symbol is added or an old one is

removed, all the symbols must be updated (or at least

reviewed) to reflect this change. This task is more complex

because words can have different representations (i.e.,

verbs and its conjugations, singular and plural nouns, etc.),

which means it is not easy to implement this functionality.

Nevertheless, there is a tool named C&L to assist in this

process [13, 19].

In relation to the counting schemes, this functionality

must be clearly automated. If the calculation is done

manually, many errors may occur. Furthermore, if LEL is

managed in an application, this application will have all the

information needed for the counting which is well estab-

lished and straightforward. Thus, we are working on a

specific tool [4] to assist in the application of the strategy,

consuming the LEL produced by C&L.

In conclusion, our approach presents a number of

advantages: (i) It can be applied in different stages of

software production; (ii) it relies on construction of LEL, a

technique which has been proven to be very effective with

experts who do not necessarily belong to the informatics

field; and (iii) traditional techniques generally rely on

actions in order to identify crosscutting concerns, while our

technique relies on subjects, objects, and states too.

There are still some issues that we have to continue

working on: (i) the technique depends on the organization

of the language application; (ii) our approach relies on LEL

and the organization of its descriptions; (iii) a tool must be

implemented to assist in some part of the approach; (iv)

160 Requirements Eng (2015) 20:139–161

123

www.manaraa.com

experimentation has to be conducted to revalidate the

results achieved so far, mainly by comparison with other

approaches; (v) a LEL must be applied to a different

application of the same domain to evaluate its reusability,

(vi) LEL should be adapted in a software product line

context to take advantage of its reusability potential, and

(vii) we are also working on text mining in order to help

the requirements engineer decide about core and cross-

cutting concern symbols.

Acknowledgments The authors want to thank Alejandro Oliveros

for their support and guidance. His help was invaluable through their

research on LEL.

References

1. Antonelli L, Rossi G, Leite JCSP (2010) Early identification of

crosscutting concerns in the domain model guided by states, In:

Proceedings of the 2010 ACM symposium on applied computing,

Sierre, Switzerland, ISBN: 978-1-60558-639-7

2. Antonelli L, Rossi G, Leite JCSP, Oliveros A (2012) Deriving

requirements specifications from the application domain language

captured by Language Extended Lexicon. In: Proceedings of the

2012 workshop in requirements engineering (WER), Buenos

Aires, Argentina, April, pp 24–27

3. Antonelli L (2012) Early identification of crosscutting con-

cerns in the application language captured by Language Extended

Lexicon, doctoral thesis (in spanish), Facultad de Informática,

Universidad Nacional de La Plata. Available at: http://sedici.unlp.

edu.ar/handle/10915/18109

4. AramayoA, Rossi J (2013) TICCWL: a tool to identify crosscutting

concerns through the LEL approach, technical report. Available at:

http://www.lifia.info.unlp.edu.ar/papers/2013/TICCWL.pdf

5. Araújo J, Whittle J, Kim DK (2004) Modeling and composing

scenario-based requirements with aspects. In: International con-

ference in requirements engineering (ICSE). IEEE Computer

Society, pp 58–67

6. Baniassad E, Clarke S (2004) Theme: an approach for aspect-

oriented analysis and design. In: International conference in

software engineering (ICSE). IEEE Computer Society,

pp 158–167

7. Baniassad E, Clements PC, Araujo J, Moreira A, Rashid A,

Tekinerdogan B (2006) Discovering early aspects. In: IEEE

software, ISSN: 0740-7459, vol 23, Issue 1, January, pp 61–70

8. Basili VR (1993) Experimental software engineering issues:

critical assessment and future directions. Lect Notes Comput Sci

706(1993):1–12. doi:10.1007/3-540-57092-6_91

9. Boehm BW (1997) Software engineering. Computer society

Press, IEEE, Silver Spring

10. Bounour N, Ghoul S, Atil F (2006) A comparative classification

of aspect mining approaches. J Comput Sci 2(4), ISSN:

1549-3636, 2005 Science publication, pp 322–325

11. Breitman KK, Leite JCSP (2003) Ontology as a requirements

engineering product, In: Proceedings of the 11th IEEE interna-

tional conference on requirements engineering (RE). IEEE

Computer Society, Monterey Bay, California, USA, ISBN:

0-7695-1980-6

12. Brooks F (1995) The mythical man-month: essays on software

engineering, 2nd edn. Addison-Wesley Professional, Reading

13. C&L Tool (2009). Available at http://pes.inf.puc-rio.br/cel/.

Accessed in October, 2009

14. Chitchyan R, Rashid A, Rayson P, Waters RW (2007) Semantics-

based composition for aspect-oriented requirements engineering.

In: International conference aspect-oriented software develop-

ment (AOSD). ACM

15. Cysneiros LM, Leite JCSP (2001) Using the Language Extended

Lexicon to support non-functional requirements elicitation. In:

Proceedings of the Workshops de Engenharia de Requisitos,

Wer’01, Buenos Aires, Argentina

16. Gil GD, Figueroa DA, Oliveros A (2000) Producción del LEL en un

Dominio Técnico.Informe de un caso. In: Proceedings of the Work-

shops de Engenharia de Requisitos, Wer’00, Rio de Janeiro, Brazil

17. Karner G (1993) Metrics for objectory. Master Thesis, Linkoping

University (LiTH-IDA-. Ex-9344:21), Linkoping, Sweden

18. Leite JCSP, Franco APM (1993) A strategy for conceptual model

acquisition. In: Proceedings of the first IEEE international sym-

posium on requirements engineering. IEEE Computer Society

Press, San Diego, California, pp 243–246

19. Leite JCSP, Silva LF, Breitman KK (2005) C&L: Uma Ferra-

menta de Apoio à Engenharia de Requisitos. In: RITA 122.:

ISSN: 0103-4308, Revista de Informática Teórica e Aplicada

(RITA), vol XII, Número 1, Junho 2005, pp 23–46

20. Mahoney M (2005) Modeling crosscutting concerns in reactive sys-

tems with aspect-orientation. In: Models 2005, doctoral symposium

21. Mahoney M, Elrad T (2007) Generating code from scenario and

state based models to address crosscutting concerns. In: Pro-

ceedings of the sixth international workshop on scenarios and

state machines (SCESM’07). IEEE

22. Mizuno Y (1983) Software quality improvement. IEEE Comput

16(3):66–72

23. Nuseibeh B (2004) Crosscutting requirements. In: Proceedings of

the 3rd international conference on aspect-oriented software

development, ISBN: 1-58113-842-3, Lancaster, UK, pp 3–4

24. Pfleeger SL (1995) Experimental design and analysis in software

engineering: types of experimental design. In: ACM SIGSOFT

software engineering notes. ACM, New York, NY, USA, vol 20,

Issue 2, April 1995

25. Rago, A, Abait, E, Marcos, C, Pace, AD, (2009) Early aspect

identification fromuse cases usingNLPandWSDtechniques. InEA

‘09: Proceedings of the 15th workshop on Early aspects, pp 19–24

26. Rashid A, Moreira A, Araújo J (2003) Modularisation and

composition of aspectual requirements. In: Proceedings of the

2nd international conference on aspect-oriented software devel-

opment, ISBN: 1-58113-660-9, Boston, Massachusetts, pp 11–20

27. Rashid A, Moreira A (2006) Domain models are NOT aspect

free. In: Proceedings of MoDELS/UML, Springer, Lecture Notes

in Computer Society, pp 155–169

28. Sampaio A, Chitchyan R, Rashid A, Rayson P (2005) EA-Miner:

a tool for automating aspect-oriented requirements identification.

In: Proceeding of ASE 05. ACM, California, USA, pp 352–355

29. Sampaio A, Loughran N, Rashid A, Rayson P(2005) Mining

aspects in requirements. In: Proceeding of the workshop on early

aspects (held with AOSD 2005), Illinois, Chicago, USA

30. Shepherd D, Pollock L, Tourwé T (2005) Using languages clues

to discovery crosscutting concerns. In: Proceeding of the inter-

national conference on software engineering, ISBN: 1-59593-

119-8, workshop on modeling and analysis of concerns in soft-

ware, St. Louis, Missouri, pp 1–6

31. Shull F, Singer J, Sjøberg DIK, Guide to advanced empirical

software engineering, 1st edn. Springer, ISBN: 978-1848000438

32. Van Den Berg K, Conejero JM (2005) A conceptual formaliza-

tion of crosscutting in AOSD. In: Proceeding of Desarrollo de

Software Orientado a Aspectos, Granada, España

33. Yu Y, Leite JCSP, Mylopoulos J (2004) From goals to aspects:

discovering aspects from requirements goal models. In: Interna-

tional requirements engineering conference, pp 38–47

Requirements Eng (2015) 20:139–161 161

123

http://sedici.unlp.edu.ar/handle/10915/18109
http://sedici.unlp.edu.ar/handle/10915/18109
http://www.lifia.info.unlp.edu.ar/papers/2013/TICCWL.pdf
http://dx.doi.org/10.1007/3-540-57092-6_91
http://pes.inf.puc-rio.br/cel/

www.manaraa.com

Copyright of Requirements Engineering is the property of Springer Science & Business
Media B.V. and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.

	Early identification of crosscutting concerns with the Language Extended Lexicon
	Abstract
	Introduction
	Related work
	Language Extended Lexicon (LEL)
	Identification of crosscutting concerns within LEL
	Construction of LEL organized into groups
	Reference counting
	Ranking of groups
	Final analysis

	Case studies
	The antitax evasion case study
	The Web portal case study

	Conclusions
	Acknowledgments
	References

